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ABSTRACT 

A method of simulating a thin plasma sheath of the type encountered in some 

aerospace applications by using a single plane of equally spaced wires is 

described.    It is shown that the surface impedance of such a periodic struc- 

ture can be made equal to that of a thin plasma sheath.    In this treatment, 

the respective surface impedances are related through three dimensionless 

parameters.    A simple technique for obtaining high losses is also discussed, 

whereby collision frequencies in the neighborhood of the operating frequency 

are realizable. 

Experimental data,   including both the lossy and lossless cases,   are compared 

with the theoretical model in the X-band region. 
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I.    INTRODUCTION 

The simulation of the electromagnetic properties of a plasma sheath,   such as 

those encountered with a slender body re-entry vehicle,   would be useful in 

laboratory antenna pattern measurements.     The main objective of this report 

is to develop a technique of simulating the reflection and transmission charac- 

teristics of a very thin sheath.     The sheath will be assumed to be overdense 

or to be operating below the plasma frequency.     The thickness of the sheath 

is assumed to be very small compared with a wavelength,   thus making radio 

transmission possible. 

In  1962 it was observed (Ref.    1) that the complex dielectric constant of a 

plasma slab could be simulated by a rodded medium.     Physically,   the currents 

induced in the rods behave like the oscillatory currents in a plasma making 

the simulation possible.     In many cases,   however,   simulating a thin over- 

dense plasma with an artificial dielectric is difficult because of fabrication 

limitations.     For example,   the simulation of a sheath with a thickness equal 

to  1/50 X      requires the spacing between adjacent rods to be equal to or less 

than a  1/50 X   . o 

It will be  shown that a wire grating structure behaves like a thin overdense 

plasma by simulating the equivalent surface current density of the sheath.     It 

is obvious that the wires cannot simulate all the complexities of an actual 

re-entry plasma,   but at this stage the  simulation of the simplest properties 

can prove to be very useful in antenna evaluation and design. 

II.  PLASMA SURFACE IMPEDANCE 

The first step in the development is to understand that which characterizes 

the reflection and transmission properties of the  sheath.     For the purpose of 

this analysis,   the sheath is assumed to be an infinite slab with a uniform plane 



wave reflecting off its surface at an angle   0,   as shown in Fig.    la. When the 

sheath is overdense and very thin,   it looks like an inductive surface current 

to the incident electromagnetic signal.     Therefore,   it should be possible to 

simulate the sheath's characteristics by replacing it with an equivalent sur- 

face current density.    It is interesting to note that J.   Wait (Ref.   2) and other 

authors have used this technique to obtain approximate solutions to complex 

boundary value problems. 

The jump condition used by Wait can be developed by applying Ampere's Law 

and Faraday's Law to a rectangular circuit as shown in Fig.   lb. The appli- 

cation of Faraday's Law leads to the continuity of the tangential   E  field across 

the sheath.    The surface current,   which is equal to the discontinuity of the 

tangential  H field,  is obtained by using Ampere's Law. 

AEt = 0 (1) 

AH   = J (2) 
t        s 

The surface current  J     is determined by 

J     = o-dE, (3) si 

where   cr   is the complex conductivity of the  sheath,   d   is the sheath thickness, 

and   E.   is the tangential electric field at the surface.     The reflection and 

transmission properties of the sheath are,   therefore,   governed solely by the 

equivalent surface current density  J   .     The surface impedance   Z        is related 

to Eq.   (3) through Ohm's Law 

Z       = -=— (ohms/square) sp      J ~i ' r        s 
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The resulting surface impedance for a thin plasma is 

Z      =-L (4) 
sp     <rd 

The well-known expression for conductivity of a cold plasma (Ref.   3) is 

2 

°    P 
vc   +  JW 

where   v     is the collision frequency and  u>     is the plasma frequency.     The 

surface impedance reduces to 

v     + i OJ Z       =-^V- sp 2 , 
o  p 

when  a   is substituted into Eq.   (4).     The last equation can be expressed in 

terms of three nondimensional quantities,  W,   V and D. 

Z 
s P        °\W2D W2D/ 

W = -E (6) 

V=^ (7) 
OJ 

D = k  d (8) 
o 

fir 
Z    =   /— = 377 ohms/square 



I 
The free space propagation constant,   k   ,   is defined as follows 

o      c      X o 

The surface impedance of the sheath is equivalent to a series   RL  circuit. 

The resistive term is associated with the loss mechanism in the plasma,   and 

the reactive part is related to the phase difference between the motion of the 

electrons and the applied electric field. 

The basic assumptions associated with the jump conditions (Ref.   4) are (1) 

the frequency,   co,   and the thickness, d,   must be such that the flux linking the 

rectangular circuit is negligible,   and (2) the fields inside the plasma have only 

z   dependence.     These assumptions are satisfied when 

-£»i 

and 

k  d «   1 o 

III.     WIRE GRID STRUCTURE 

The behavior of a plane of equally spaced wires has been discussed at some 

length by various authors (Refs.   5,   6 and 7).     In the case under consideration, 

the electric field is assumed to be parallel to the wires as shown in Fig.   2. 

When the diameter of the wires is much less than the wire spacing and the 

-5- 
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spacing is less than a half a wavelength,   then the surface impedance of the 

grid structure (Refs.   8 and 9) can be shown to equal 

Z       = R    + JZ    ;Ain(   *   ) (9) 
sw s      '   o\ V2iTr/ o 

where   a   is the  spacing between adjacent wires,    r   is the radius of the wires, 

and   X     is the free space wavelength.    If the wire spacing becomes greater 

than half a wavelength,   the grid structure starts to take on the character of 

an optical grating and the appearance of more than one reflected beam is 

sometimes observed.     The internal surface resistance,    R   ,    of a grid struc- 

ture,   consisting of n  wires per unit width,  is equivalent to the resistance per 

unit length of n  wires in parallel.     It follows that 

R    = aR (10) s o 

where   R     is the internal resistance per unit length of one wire. 

IV.     EQUIVALENCE BETWEEN PLASMA AND PERIODIC STRUCTURE 

Next in the development is the comparison of the surface impedance of the 

wires with that of the plasma sheath.     The surface impedance of the plasma 

sheath is given by Eq.   (5) and the wire grid structure by Eq.   (9). 

Z   V Z 
Z       =-4- + J       ° 

sp      W2D W2D 

Z        = R    + jZ      * ln(-^_) 
sw s o X        \2irr/ 



If one notes that both impedances have a resistance and an inductive reactance, 

then the relations connecting the wire grid and plasma sheath parameters are 

found by equating the real and imaginary parts of the respective impedances. 

Rs V 

o      W^D 

o WD 

Equations (11) and (12) are then reduced to the following: 

R        cv s _       c 

o      u>  a 
P 

a ln(^-)       ,      2 
\2iTr/       2TTC 

o \   u  d o   p 

c   = 1 

vV  t 

indicating that the simulation is independent of frequency.     Equations (11) and 

(12) constitute the equations used to design a wire grid structure having an 

equivalent   W,   D,   and V. 

PRACTICAL CONSIDERATIONS 

High collision frequencies require large surface resistance as seen from 

Eq.   (11).    The surface resistance,   R   ,   must be of the order of 500 ohms per 

-8- 



square,   if collision frequencies in the neighborhood of the operating frequency 

are desired.     One promising method of obtaining large internal resistance 

consists of coating quartz fibers with a thin metallic layer of thickness   t,   (see 

Fig.   3a).     By making the thickness of the metallic layer much less than a skin 

depth,   the  resulting internal resistance is independent of frequency and is 

given by 

R    = i= -(ohms/meter) (13) o      a       2irrt . . 

where   cr       is the conductivity of the metallic layer.     With this technique, 

resistances of  1000 ohms per inch have been obtained. 

The equally spaced wires will only simulate the inductive character of the 

plasma when the electric field is parallel to the wires.     When the electric 

field is perpendicular to the wires,   the incident wave is practically unaltered 

by their presence.     A more detailed analysis (Ref.    10) shows that the surface 

admittance is small for this polarization.     A thin plasma sheath can be simu- 

lated by a square lattice screen structure independent of the polarization 

(see  Fig.   3b).     The incident electric field can be  separated into two com- 

ponents,   each one parallel to one set of wires.     The resulting surface imped- 

ance  is  given by Eq.   (9). 

VI.     REFLECTION AND TRANSMISSION COEFFICIENTS 

The reflection and transmission coefficients for the plane of wires and the 

plasma  sheath can be derived from the jump conditions given in Eqs.   (1) and 

(2).     Assume that a plane wave is incident at an angle   O from the left and the 

electric  field is parallel to the plane of the interface as  shown in  Fig.   2. 

-9- 
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Application of the jump conditions,   Eqs.   (1) and (2),   to this geometry yields 

(H1 + Hr - H*) cos  0 = E    * E ( 14) 
s 

(E1 + Er -  E*) - 0 (15) 

Since the incident,   reflected,   and transmitted fields are uniform plane waves, 

the electric field is related to magnetic field through an intrinsic impedance 

Z   .    Use of this concept reduces Eq.   (14) to 

.   i r      „t.  cos 9      E   + E ,,,. 
(E    -  E     -  E ) —2  = —2  (l(y> 

o s 

Solution of Eqs.   (15) and (16) for the ratio   E  /E    leads to a reflection 

coefficient given by 

r  =  T^ n (I7) 2Z   cos 9 1+-4  
o 

In a similar manner,   the transmission coefficient is obtained by solving  Eqs. 

(15) and (16) for the ratio   EVE
1 

Z 
1  + 

(18) 

2Z   cos  0 
s 

The reflection and transmission coefficients for the thin plasma sheath are 

obtained by substituting the surface impedance given by Eq.   (5) into Eqs.   (17) 

and (18). 

11- 



p "  .  7 2 V cos 6   ,   . 2 cos 0 (19) 

1+  5  +j  g  
WD WD 

2V cos O   ,   . 2 cos 0 
 2  + J   2  

T                   W   D                  W^D 
p      I  7 2V cos O  ,   . 2 cos G v^u' 1+  + J  

W6D WD 

Similarly,   the reflection and transmission coefficients for the wire grid 

structure are given by 

R      =  -^ '-X,  (21) 
w       .    ,   ZRs Q      . Za ni    /   a   \ 1   +  -55    COS   8 +   1  T    COS   U In rr  

-=    COS   0+1  rr    COS    G WTT—) ™> 
Z J X. \2tTr/ 

J3 (3  

,   ,   2Rs „ ,   . 2a o i   /  a  \ 1   + -sj— cos  0 +  1 rr— cos  8 lnl^—I 
Z J \ \2TTr/ 

T     = TR %3 — (22) w      ,   ,   ZRs „ ,   . 2a 

o o 

The  subscripts   p   and  w  denote the quantities pertaining to the thin plasma 

sheath and the wire grid structure,   respectively. 

VII.     EXPERIMENTAL DATA 

The reflection and transmission properties of different wire grid structures 

were measured in an X-band waveguide geometry.     The dominant   TE   _   mode 

in a rectangular waveguide is analogous to two uniform plane waves bouncing 

off the walls of the waveguide as shown in Fig.   4   (Ref.   11).     The equivalent 

12- 
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angle of incidence,   O,   of these two waves is related to the waveguide 

impedance and waveguide wavelength as shown below. 

cos 0 
(23) 

'g      cos 0 
(24) 

With this in mind,   the measurements obtained in the waveguide geometry are 

equivalent to the same measurements performed in free space but at an angle 

of incidence given by Eqs.   (23) and (24).     The equations governing the complex 

reflection and transmission coefficients for the wire structure in the wave- 

guide geometry are obtained by substituting Eqs.   (23) and (24) into Eqs.   (21) 

and (22). 

R -1 

1 + 2(Rs/Zg) + jT2a ln(IJ?)/(\g) 
(25) 

i 

2(Rs/Zg) + j 2 a In (ik)H 
1 + 2(Rs/Zg) + j 2a MHFI'H 

(26) 

The experimental data were measured with an X-band waveguide interfer- 

ometer shown in Fig.   5.     The readings on the precision attenuator and phase 

shifter are related to the complex transmission coefficient of the sample 

being tested. 

The slotted line located directly in front of the test section yields information 

pertaining to the reflection coefficient. The position of the nulls of the stand- 

ing wave pattern are related to the reflection phase,   and the VSWR reading 

14- 
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yields the magnitude of the reflection coefficient.     When the phase  shift 

measurements are being performed,   the probe antenna should be extracted 

from the slotted line. 

The actual experiment consisted of measuring both the complex reflection 

and transmission coefficients for wire grid structures having   a,   ranging 

from 0. 15 in.   to 0. 3 in.   and   r,   ranging from 0. 75 to 4. 0 mils.     The wave- 

guide test section which holds the wire grid structure in place is shown in 

Fig.   6.     The lossless data (R    = 0) are plotted as a function of 

Xg _   W2D 

ln(   *) " cos ° 
\2irr/ 

and compared with Eq.   (25).     The equivalent plasma frequency and thickness 

of the  simulated sheath can be obtained from Eq.   (12).     Figures 7 and 8 

summarize the measurements performed on the lossless copper wire models. 

As the diameter of the wire increases or the spacing decreases,   the reflec- 

tions off the grid structure become more severe as is seen in Fig.   7.     The 

simulation of more dense plasma layers can therefore be accomplished either 

by using larger wires or by increasing the number of wires in the grid 

structure. 

The experimental data for the lossy coated fibers are compared with Eqs. (25) 

and (26) in Figs.   9 through 16.     The lossy wires are quartz fibers ranging 

from   1. 5 to 4. 0 mils in diameter with a gold pottery glaze fired on their 

surface.     The value of R     is obtained by measuring the linear resistance,   R   , s ' " o 
with a dc ohmmeter and relating  R    to R     by means of Eq.(10).     The addition =      o s ' 
of losses in the grid structure tends to decrease the severity of the reflec- 

tions,   thereby increasing the transmission of electromagnetic energy as 

shown by the experimental data.     The decrease in the reflection coefficient is 

attributed to the improved matching between the simulated sheath and its 

I 
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surroundings.     As the losses are increased,   the surface impedance of the 

simulated  sheath increases which,   in turn,   makes the reflections  smaller. 

Additional experimental data were obtained for a wire mesh structure.     How- 

ever,   in this case,   the wires making up the mesh were not orthogonal with 

the waveguide walls.     The results indicate no measurable deviation in the 

reflection characteristics  from the models having wires parallel to the 

electric  field.     The reflection and transmission coefficients,   therefore,   obey 

the relationships given by Eqs.   (25) and (26) and are independent of the 

polarization of the  incident fields. 

VIII.     SUMMARY 

The  simulation of a thin plasma sheath can be accomplished by using a square 

lattice  screen  structure when the  following assumptions are  valid 

P » 1 

k  d <^   1 o 

Large  collision frequencies can be  simulated by using coated quartz fibers. 

Collision frequencies  in the neighborhood of the operating  frequency are 

realizable by this method.     The experimental data confirm that the grid 

structure will simulate the impedance characteristics of a thin plasma sheath. 
2 

The values of   W   D  and   V   for the coated fiber grid structures are in a range 

which characterizes the  sheaths developed around  slender body re-entry 

vehicles.     Plasma sheath simulation with a grid structure could therefore be 

useful in ground testing and evaluation of re-entry antenna systems. 
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